Reexamining the principle of mean-variance preservation for neural network initialization
نویسندگان
چکیده
منابع مشابه
Neural network-based mean-variance-skewness model for portfolio selection
In this study, a novel neural network-based mean–variance–skewness model for optimal portfolio selection is proposed integrating different forecasts and trading strategies, as well as investors’ risk preference. Based on the Lagrange multiplier theory in optimization and the radial basis function (RBF) neural network, the model seeks to provide solutions satisfying the trade-off conditions of m...
متن کاملAlgorithms for Initialization of Neural Network Weights
The paper is devoted to the comparison of different approaches to initialization of neural network weights. Most algorithms based on various levels of modification of random weight initialization are used for the multilayer artificial neural networks. Proposed methods were verified for simulated signals at first and then used for modelling of real data of gas consumption in the Czech Republic.
متن کاملAccurate Initialization of Neural Network Weights
Abstracf Proper initialization of neural networks is critical for a successful training of its weights. Many methods have been proposed to achieve this, including heuristic least squares approaches. In this paper, inspired by these previous attempts to train (or initialize) neural networks, we formulate a mathematically sound algorithm based on backpropagating the desired output through the lay...
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولA novel weight initialization method for the random neural network
In this paper, we propose a novel weight initialization method for the Random Neural Network. The method relies on approximating the signal-flow equations of the network to obtain a linear system of equations with nonnegativity constraints. For the solution of the formulated linear Nonnegative Least Squares problem we have developed an improved projected gradient algorithm. It is shown that sup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Research
سال: 2020
ISSN: 2643-1564
DOI: 10.1103/physrevresearch.2.033135